Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
World J Clin Cases ; 11(10): 2168-2180, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2304359

ABSTRACT

The purpose of this study was to investigate the clinical application of severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) specific antibody detection and anti-SARS-CoV-2 specific monoclonal antibodies (mAbs) in the treatment of coronavirus infectious disease 2019 (COVID-19). The dynamic changes of SARS-CoV-2 specific antibodies during COVID-19 were studied. Immunoglobulin M (IgM) appeared earlier and lasted for a short time, while immunoglobulin G (IgG) appeared later and lasted longer. IgM tests can be used for early diagnosis of COVID-19, and IgG tests can be used for late diagnosis of COVID-19 and identification of asymptomatic infected persons. The combination of antibody testing and nucleic acid testing, which complement each other, can improve the diagnosis rate of COVID-19. Monoclonal anti-SARS-CoV-2 specific antibodies can be used to treat hospitalized severe and critically ill patients and non-hospitalized mild to moderate COVID-19 patients. COVID-19 convalescent plasma, highly concentrated immunoglobulin, and anti-SARS-CoV-2 specific mAbs are examples of anti-SARS-CoV-2 antibody products. Due to the continuous emergence of mutated strains of the novel coronavirus, especially omicron, its immune escape ability and infectivity are enhanced, making the effects of authorized products reduced or invalid. Therefore, the optimal application of anti-SARS-CoV-2 antibody products (especially anti-SARS-CoV-2 specific mAbs) is more effective in the treatment of COVID-19 and more conducive to patient recovery.

2.
Nat Commun ; 12(1): 7083, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1555251

ABSTRACT

The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.


Subject(s)
Atlases as Topic , Single-Cell Analysis/veterinary , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Birds , Cell Communication , Evolution, Molecular , Gene Regulatory Networks , Host-Pathogen Interactions , Lung/cytology , Lung/metabolism , Lung/virology , Mammals , Receptors, Virus/genetics , Receptors, Virus/metabolism , Reptiles , SARS-CoV-2/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transcriptome , Viral Tropism , Virus Internalization
3.
Exp Eye Res ; 205: 108501, 2021 04.
Article in English | MEDLINE | ID: covidwho-1082698

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) receptor has been proved for SARS-CoV-2 cell entry after auxiliary cellular protease priming by transmembrane protease serine 2 (TMPRSS2), but the co-effect of this molecular mechanism was unknown. Here, single-cell sequencing was performed with human conjunctiva and the results have shown that ACE2 and TMPRSS2 were highly co-expressed in the goblet cells with genes involved in immunity process. This identification of conjunctival cell types which are permissive to virus entry would help to understand the process by which SARS-CoV-2 infection was established. These finding might be suggestive for COVID-19 control and protection.


Subject(s)
COVID-19/genetics , Conjunctiva/metabolism , Gene Expression Regulation , Goblet Cells/metabolism , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , COVID-19/metabolism , COVID-19/pathology , Conjunctiva/pathology , Goblet Cells/pathology , Humans , Peptidyl-Dipeptidase A/biosynthesis , RNA/genetics , SARS-CoV-2 , Serine Endopeptidases/biosynthesis
4.
Sci Rep ; 10(1): 10568, 2020 06 29.
Article in English | MEDLINE | ID: covidwho-618682

ABSTRACT

Topical intra-nasal sprays are amongst the most commonly prescribed therapeutic options for sinonasal diseases in humans. However, inconsistency and ambiguity in instructions show a lack of definitive knowledge on best spray use techniques. In this study, we have identified a new usage strategy for nasal sprays available over-the-counter, that registers an average 8-fold improvement in topical delivery of drugs at diseased sites, when compared to prevalent spray techniques. The protocol involves re-orienting the spray axis to harness inertial motion of particulates and has been developed using computational fluid dynamics simulations of respiratory airflow and droplet transport in medical imaging-based digital models. Simulated dose in representative models is validated through in vitro spray measurements in 3D-printed anatomic replicas using the gamma scintigraphy technique. This work breaks new ground in proposing an alternative user-friendly strategy that can significantly enhance topical delivery inside human nose. While these findings can eventually translate into personalized spray usage instructions and hence merit a change in nasal standard-of-care, this study also demonstrates how relatively simple engineering analysis tools can revolutionize everyday healthcare. Finally, with respiratory mucosa as the initial coronavirus infection site, our findings are relevant to intra-nasal vaccines that are in-development, to mitigate the COVID-19 pandemic.


Subject(s)
Administration, Inhalation , Administration, Intranasal/methods , Betacoronavirus , Coronavirus Infections/prevention & control , Drug Delivery Systems/methods , Nasal Sprays , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Computer Simulation , Coronavirus Infections/virology , Humans , Hydrodynamics , Nasal Cavity/anatomy & histology , Nasal Mucosa/drug effects , Nasal Mucosa/virology , Nebulizers and Vaporizers , Paranasal Sinuses/drug effects , Paranasal Sinuses/virology , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL